MinimaxAdaptiveControl.InducedlpGain
MinimaxAdaptiveControl.MAController
MinimaxAdaptiveControl.OFLinMod
MinimaxAdaptiveControl.OFPlant
MinimaxAdaptiveControl.RecursiveELS
MinimaxAdaptiveControl.SSLinMod
MinimaxAdaptiveControl.SSPlant
MinimaxAdaptiveControl.SelfTuningLQG
MinimaxAdaptiveControl.ValueFunction
MinimaxAdaptiveControl.stateObserver
MinimaxAdaptiveControl.InducedlpGain
— TypeInducedlpGain{T, N<:Integer}
Performance metric based on induced l_p gain.
Fields
value::T
: Value of the induced l_p gain.sumpOutput::T
: Sum of the p-norm of the output to the p-th power.sumpInput::T
: Sum of the p-norm of the input to the p-th power.p::N
: Order of the norm.
MinimaxAdaptiveControl.MAController
— TypeMAController{T}
Minimax Adaptive Switching Controller for the system
\[\begin{aligned} z_{t + 1} & = \hat A z_t + \hat B u_t + \hat G d_t, t \geq 0 \\ u_t & = K_t z_t, \end{aligned}\]
with the uncertain objective
\[J = \min_u \max_{d, N, H} \sum_{t = 0}^\infty \sigma_H(z_t, u_t, d_t)\]
where $z_t$ is the state vector, $u_t$ is the control input vector and $d_t$ is measured disturbance vector. The function $\sigma_H$ is a quadratic function of the form ```math \begin{aligned} \sigmaH(zt, ut, dt) = \begin{bmatrix} zt \ ut \ dt \end{bmatrix}^T H \begin{bmatrix} zt \ ut \ dt \end{bmatrix}. \end{aligned}
selectionRule
is a (possibly stateful) function that selects the control action based on $rs$ and the current state.
Fields
z::AbstractVector{T}
: State vector of the controller.Ahat::AbstractMatrix{T}
: State transition matrix.Bhat::AbstractMatrix{T}
: Estimated control input matrix.Ghat::AbstractMatrix{T}
: Estimated disturbance input matrix.Ks::AbstractVector{Matrix{T}}
: Feedback gains, one for each mode.Hs::AbstractVector{Matrix{T}}
: Quadratic cost matrices, one for each mode.rs::AbstractVector{T}
: Worst-case historically incurred costsselectionRule::Function
: Function for selecting the control action.
MinimaxAdaptiveControl.OFLinMod
— TypeOFLinMod{T}
Output-feedback representation of the linear model
\[\begin{aligned} x_{t + 1} & = A x_t + B u_t + Gw_t,\quad t \geq 0 \\ y_t & = C x_t + D v_t. \end{aligned}\]
with cost function
\[ J = \sum_{t = 0}^{\infty} \left( x_t^T Q x_t + u_t^T R u_t \right).\]
Fields
A::AbstractMatrix{T}
: State transition matrix.B::AbstractMatrix{T}
: Control input matrix.G::AbstractMatrix{T}
: Disturbance input matrix.C::AbstractMatrix{T}
: Output matrix.D::AbstractMatrix{T}
: Feedforward matrix.Q::AbstractMatrix{T}
: State cost matrix.R::AbstractMatrix{T}
: Control input cost matrix.
MinimaxAdaptiveControl.OFPlant
— TypeOFPlant{T}
Output-feedback representation of a plant of the form
\[\begin{aligned} x_{t + 1} & = A x_t + B u_t + Gw_t,\quad t \geq 0 \\ y_t & = C x_t + D v_t. \end{aligned}\]
Fields
A::AbstractMatrix{T}
: State transition matrix.B::AbstractMatrix{T}
: Control input matrix.G::AbstractMatrix{T}
: Disturbance input matrix.C::AbstractMatrix{T}
: Output matrix.D::AbstractMatrix{T}
: Noise Feedforward matrix.x::AbstractVector{T}
: State vector.
MinimaxAdaptiveControl.RecursiveELS
— TypeRecursiveELS{T}
Extended Least Squares (ELS) estimator for recursive parameter estimation.
Fields
parameterEstimates::Vector{T}
: Vector of current parameter estimates.inverseErrorCovariance::Matrix{T}
: Inverse of the error covariance matrix.regressors::Vector{T}
: Vector of regressor values.ny::Int
: Number of outputs.nu::Int
: Number of inputs.ne::Int
: Number of errors.regularization::T
: Regularization parameter for numerical stability.
MinimaxAdaptiveControl.SSLinMod
— TypeSSLinMod{T}
State-space representation of the linear model
\[ x_{t + 1} = A x_t + B u_t, t \geq 0\]
with cost function
\[ J = \sum_{t = 0}^{\infty} \left( x_t^T Q x_t + u_t^T R u_t \right).\]
Fields
A::AbstractMatrix{T}
: State transition matrix.B::AbstractMatrix{T}
: Control input matrix.Q::AbstractMatrix{T}
: State cost matrix.R::AbstractMatrix{T}
: Control input cost matrix.
MinimaxAdaptiveControl.SSPlant
— TypeSSPlant{T}
State-space representation of the plant:
\[\begin{aligned} x_{t + 1} & = A x_t + B u_t + w_t, t \geq 0 \end{aligned}\]
where $x_t$ is the state vector, $u_t$ is the control input vector, and $w_t$ is the disturbance vector.
Fields
A::AbstractMatrix{T}
: State transition matrix.B::AbstractMatrix{T}
: Control input matrix.x::AbstractVector{T}
: State vector.
MinimaxAdaptiveControl.SelfTuningLQG
— TypeSelfTuningLQG(A0::Matrix{T}, K0::Matrix{T}, C0::Matrix{T}, B0::Matrix{T}, xhat0::Vector{T}, regularization::T, ρ::T, nu::Int) where T
Initialize the self-tuning LQG controller.
Arguments
A0::Matrix{T}
: Initial state transition matrix.K0::Matrix{T}
: Initial Kalman gain matrix.C0::Matrix{T}
: Initial measurement matrix.B0::Matrix{T}
: Initial control input matrix.xhat0::Vector{T}
: Initial state estimate.regularization::T
: Regularization parameter for numerical stability.ρ::T
: Regularization parameter for the Riccati equation.nu::Int
: Number of control inputs.
Returns
SelfTuningLQG{T}
: Initialized self-tuning LQG controller.
MinimaxAdaptiveControl.ValueFunction
— TypeValueFunction{T}
Value function for an optimal control problem.
Fields
value::T
: Value of the function.Ps::AbstractVector{Matrix{T}}
: Sequence of cost-to-go matrices.weights::AbstractVector{Vector{T}}
: Sequence of weights.controller::MAController{T}
: Associated minimax adaptive controller.
MinimaxAdaptiveControl.stateObserver
— TypestateObserver{T}
State observer, also known as a Kalman Filter, for estimating the state of a system.
Fields
A::Matrix{T}
: State transition matrix.K::Matrix{T}
: Kalman gain matrix.C::Matrix{T}
: Measurement matrix.B::Matrix{T}
: Control input matrix.xhat::Vector{T}
: Estimated state vector.